Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.

نویسندگان

  • Eric K Shang
  • Derek P Nathan
  • Shanna R Sprinkle
  • Ronald M Fairman
  • Joseph E Bavaria
  • Robert C Gorman
  • Joseph H Gorman
  • Benjamin M Jackson
چکیده

BACKGROUND Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. METHODS AND RESULTS Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). CONCLUSIONS Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical Analysis of an Aortic Aneurysm Model and Its Clinical Application to Thoracic Aortic Aneurysms for Defining “Saccular” Aneurysms

BACKGROUND We aimed to develop a simple structural model of aortic aneurysms using computer-assisted drafting (CAD) in order to create a basis of definition for saccular aortic aneurysms. METHODS AND RESULTS We constructed a simple aortic aneurysm model with 2 components: a tube similar to an aorta and an ellipse analogous to a bulging aneurysm. Three parameters, including the vertical and ho...

متن کامل

Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness

BACKGROUND Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm ruptu...

متن کامل

Influence of surrounding tissues on biomechanics of aortic wall.

The present study investigates effects of surrounding tissues and non-uniform wall thickness on the biomechanics of the thoracic aorta. We construct two idealised computational models exemplifying the importance of surrounding tissues and non-uniform wall thickness, namely the uniform-thickness model and the histology image-based model. While the former neglects a connective tissue layer surrou...

متن کامل

Formation of Saccular Cerebral Aneurysms May Require Proliferation of the Arterial Wall: Computational Investigation*

We have performed numerical simulations to examine saccular cerebral aneurysm formation at the outer curve of a bent artery. A U-shaped arterial geometry with torsion, which was modeled on part of the human internal carotid artery, has been employed. A new numerical model was proposed to take into account proliferation as well as degradation of the arterial wall. Proliferation of the arterial w...

متن کامل

Mycotic aortic aneurysm as a postsurgical complication: report of a case and review of the literature

Mycotic aneurysms are localized and irreversible dilatations of the arteries caused by weakening and damaging the arterial wall by an invasive organism establishing infective arteritis. Mycotic aneurysm of the thoracic aorta is a rare event; however, it can be fatal if not diagnosed early or not treated appropriately. Clinical findings are usually nonspecific; however, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 128 11 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2013